Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones.

Identifieur interne : 002F29 ( Main/Exploration ); précédent : 002F28; suivant : 002F30

Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones.

Auteurs : Eric A. Smith [États-Unis] ; Sean B. Collette ; Thomas A. Boynton ; Tiffany Lillrose ; Mikel R. Stevens ; Matthew F. Bekker ; Dennis Eggett ; Samuel B. St Clair

Source :

RBID : pubmed:21389003

Descripteurs français

English descriptors

Abstract

Phenotypic variation in plant traits is strongly influenced by genetic and environmental factors. Over the life span of trees, developmental factors may also strongly influence leaf phenotypes. The objective of this study was to fill gaps in our understanding of developmental influences on patterns of phenotypic trait variation among different-aged ramets within quaking aspen (Populus tremuloides Michx.) clones. We hypothesized that phenotypic variation in leaf functional traits is strongly influenced by developmental cues as trees age. We surveyed eight aspen clones, each with eight distinct age classes ranging from 1 to 160 years in age, and selected three ramets per age class for sample collection. Leaf traits measured included photosynthesis, stomatal conductance, water use efficiency, specific leaf area, and concentrations of N, phosphorus, sucrose, starch, condensed tannins and phenolic glycosides. Using regression analysis, we examined the relationships between ramet age and expression of leaf functional traits. The data showed significant correlations between ramet age and 10 of the 12 phenotypic traits measured. Eight of the phenotypic traits demonstrated a non-linear relationship in which large changes in phenotype occurred in the early stages of ramet development and stabilized thereafter. Water relations, nutrient concentration, leaf gas exchange and phenolic glycosides tended to decrease from early to late development, whereas sucrose, condensed tannin concentrations and water use efficiency increased with ramet age. We hypothesize that ontogenetically derived phenotypic variation leads to fitness differentials among different-aged ramets, which may have important implications for clone fitness. Age-related increases in phenotypic diversity may partially underlie aspen's ability to tolerate the large environmental gradients that span its broad geographical range.

DOI: 10.1093/treephys/tpq100
PubMed: 21389003


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones.</title>
<author>
<name sortKey="Smith, Eric A" sort="Smith, Eric A" uniqKey="Smith E" first="Eric A" last="Smith">Eric A. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Collette, Sean B" sort="Collette, Sean B" uniqKey="Collette S" first="Sean B" last="Collette">Sean B. Collette</name>
</author>
<author>
<name sortKey="Boynton, Thomas A" sort="Boynton, Thomas A" uniqKey="Boynton T" first="Thomas A" last="Boynton">Thomas A. Boynton</name>
</author>
<author>
<name sortKey="Lillrose, Tiffany" sort="Lillrose, Tiffany" uniqKey="Lillrose T" first="Tiffany" last="Lillrose">Tiffany Lillrose</name>
</author>
<author>
<name sortKey="Stevens, Mikel R" sort="Stevens, Mikel R" uniqKey="Stevens M" first="Mikel R" last="Stevens">Mikel R. Stevens</name>
</author>
<author>
<name sortKey="Bekker, Matthew F" sort="Bekker, Matthew F" uniqKey="Bekker M" first="Matthew F" last="Bekker">Matthew F. Bekker</name>
</author>
<author>
<name sortKey="Eggett, Dennis" sort="Eggett, Dennis" uniqKey="Eggett D" first="Dennis" last="Eggett">Dennis Eggett</name>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21389003</idno>
<idno type="pmid">21389003</idno>
<idno type="doi">10.1093/treephys/tpq100</idno>
<idno type="wicri:Area/Main/Corpus">002E88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E88</idno>
<idno type="wicri:Area/Main/Curation">002E88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E88</idno>
<idno type="wicri:Area/Main/Exploration">002E88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones.</title>
<author>
<name sortKey="Smith, Eric A" sort="Smith, Eric A" uniqKey="Smith E" first="Eric A" last="Smith">Eric A. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Collette, Sean B" sort="Collette, Sean B" uniqKey="Collette S" first="Sean B" last="Collette">Sean B. Collette</name>
</author>
<author>
<name sortKey="Boynton, Thomas A" sort="Boynton, Thomas A" uniqKey="Boynton T" first="Thomas A" last="Boynton">Thomas A. Boynton</name>
</author>
<author>
<name sortKey="Lillrose, Tiffany" sort="Lillrose, Tiffany" uniqKey="Lillrose T" first="Tiffany" last="Lillrose">Tiffany Lillrose</name>
</author>
<author>
<name sortKey="Stevens, Mikel R" sort="Stevens, Mikel R" uniqKey="Stevens M" first="Mikel R" last="Stevens">Mikel R. Stevens</name>
</author>
<author>
<name sortKey="Bekker, Matthew F" sort="Bekker, Matthew F" uniqKey="Bekker M" first="Matthew F" last="Bekker">Matthew F. Bekker</name>
</author>
<author>
<name sortKey="Eggett, Dennis" sort="Eggett, Dennis" uniqKey="Eggett D" first="Dennis" last="Eggett">Dennis Eggett</name>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Analysis of Variance (MeSH)</term>
<term>DNA, Plant (chemistry)</term>
<term>DNA, Plant (genetics)</term>
<term>Environment (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genetic Variation (genetics)</term>
<term>Genetic Variation (physiology)</term>
<term>Phenotype (MeSH)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stomata (physiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Regression Analysis (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (composition chimique)</term>
<term>ADN des plantes (génétique)</term>
<term>Adaptation physiologique (MeSH)</term>
<term>Analyse de régression (MeSH)</term>
<term>Analyse de variance (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Environnement (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Stomates de plante (physiologie)</term>
<term>Transpiration des plantes (physiologie)</term>
<term>Variation génétique (génétique)</term>
<term>Variation génétique (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Variation</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Transpiration des plantes</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Genetic Variation</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Analysis of Variance</term>
<term>Environment</term>
<term>Genetic Markers</term>
<term>Phenotype</term>
<term>Polymerase Chain Reaction</term>
<term>Regression Analysis</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse de régression</term>
<term>Analyse de variance</term>
<term>Environnement</term>
<term>Facteurs temps</term>
<term>Marqueurs génétiques</term>
<term>Phénotype</term>
<term>Réaction de polymérisation en chaîne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phenotypic variation in plant traits is strongly influenced by genetic and environmental factors. Over the life span of trees, developmental factors may also strongly influence leaf phenotypes. The objective of this study was to fill gaps in our understanding of developmental influences on patterns of phenotypic trait variation among different-aged ramets within quaking aspen (Populus tremuloides Michx.) clones. We hypothesized that phenotypic variation in leaf functional traits is strongly influenced by developmental cues as trees age. We surveyed eight aspen clones, each with eight distinct age classes ranging from 1 to 160 years in age, and selected three ramets per age class for sample collection. Leaf traits measured included photosynthesis, stomatal conductance, water use efficiency, specific leaf area, and concentrations of N, phosphorus, sucrose, starch, condensed tannins and phenolic glycosides. Using regression analysis, we examined the relationships between ramet age and expression of leaf functional traits. The data showed significant correlations between ramet age and 10 of the 12 phenotypic traits measured. Eight of the phenotypic traits demonstrated a non-linear relationship in which large changes in phenotype occurred in the early stages of ramet development and stabilized thereafter. Water relations, nutrient concentration, leaf gas exchange and phenolic glycosides tended to decrease from early to late development, whereas sucrose, condensed tannin concentrations and water use efficiency increased with ramet age. We hypothesize that ontogenetically derived phenotypic variation leads to fitness differentials among different-aged ramets, which may have important implications for clone fitness. Age-related increases in phenotypic diversity may partially underlie aspen's ability to tolerate the large environmental gradients that span its broad geographical range.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21389003</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>31</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones.</ArticleTitle>
<Pagination>
<MedlinePgn>68-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpq100</ELocationID>
<Abstract>
<AbstractText>Phenotypic variation in plant traits is strongly influenced by genetic and environmental factors. Over the life span of trees, developmental factors may also strongly influence leaf phenotypes. The objective of this study was to fill gaps in our understanding of developmental influences on patterns of phenotypic trait variation among different-aged ramets within quaking aspen (Populus tremuloides Michx.) clones. We hypothesized that phenotypic variation in leaf functional traits is strongly influenced by developmental cues as trees age. We surveyed eight aspen clones, each with eight distinct age classes ranging from 1 to 160 years in age, and selected three ramets per age class for sample collection. Leaf traits measured included photosynthesis, stomatal conductance, water use efficiency, specific leaf area, and concentrations of N, phosphorus, sucrose, starch, condensed tannins and phenolic glycosides. Using regression analysis, we examined the relationships between ramet age and expression of leaf functional traits. The data showed significant correlations between ramet age and 10 of the 12 phenotypic traits measured. Eight of the phenotypic traits demonstrated a non-linear relationship in which large changes in phenotype occurred in the early stages of ramet development and stabilized thereafter. Water relations, nutrient concentration, leaf gas exchange and phenolic glycosides tended to decrease from early to late development, whereas sucrose, condensed tannin concentrations and water use efficiency increased with ramet age. We hypothesize that ontogenetically derived phenotypic variation leads to fitness differentials among different-aged ramets, which may have important implications for clone fitness. Age-related increases in phenotypic diversity may partially underlie aspen's ability to tolerate the large environmental gradients that span its broad geographical range.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Eric A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Collette</LastName>
<ForeName>Sean B</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boynton</LastName>
<ForeName>Thomas A</ForeName>
<Initials>TA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lillrose</LastName>
<ForeName>Tiffany</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stevens</LastName>
<ForeName>Mikel R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bekker</LastName>
<ForeName>Matthew F</ForeName>
<Initials>MF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eggett</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>St Clair</LastName>
<ForeName>Samuel B</ForeName>
<Initials>SB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21389003</ArticleId>
<ArticleId IdType="pii">tpq100</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpq100</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Utah</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bekker, Matthew F" sort="Bekker, Matthew F" uniqKey="Bekker M" first="Matthew F" last="Bekker">Matthew F. Bekker</name>
<name sortKey="Boynton, Thomas A" sort="Boynton, Thomas A" uniqKey="Boynton T" first="Thomas A" last="Boynton">Thomas A. Boynton</name>
<name sortKey="Collette, Sean B" sort="Collette, Sean B" uniqKey="Collette S" first="Sean B" last="Collette">Sean B. Collette</name>
<name sortKey="Eggett, Dennis" sort="Eggett, Dennis" uniqKey="Eggett D" first="Dennis" last="Eggett">Dennis Eggett</name>
<name sortKey="Lillrose, Tiffany" sort="Lillrose, Tiffany" uniqKey="Lillrose T" first="Tiffany" last="Lillrose">Tiffany Lillrose</name>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<name sortKey="Stevens, Mikel R" sort="Stevens, Mikel R" uniqKey="Stevens M" first="Mikel R" last="Stevens">Mikel R. Stevens</name>
</noCountry>
<country name="États-Unis">
<region name="Utah">
<name sortKey="Smith, Eric A" sort="Smith, Eric A" uniqKey="Smith E" first="Eric A" last="Smith">Eric A. Smith</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21389003
   |texte=   Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21389003" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020